Translate

Saturday, November 9, 2019

Matchback 11.08.2019: State and local counties


Summary:

Exactly 2,011,128 ballots have been 'Accepted' or 'Received' in last night's (11/08/2019) statewide matchback Another 
31,483 have been rejected or 'challenged'.  As of 
11/08/2019 8:15 PM last night, Election Results WA has 1,877,878 tabulated (counted) with  133,459 ballots on hand to be processed (e.g. tabulated). Understanding ballot processing this time of year is complicated and Same Day Registration has increased that complexity. [Link to blog post coming here].  Although the previous matchbacks have  been dominated by those born in  1940s or 1950s (now ages 60 - 79), younger generations are catching up in these later returns and it would be hard not to assume that has made all the difference for Democratic candidates in tight races throughout the state but especially in King and Whatcom Counties :

    Decade  Age Registered  Voted Turnout
 1:  1900s 110s         27      5    18.5
 2:  1910s 100s       1711    537    31.4
 3:  1920s  90s      44030  22336    50.7
 4:  1930s  80s     184015 122333    66.5
 5:  1940s  70s     492174 347617    70.6
 6:  1950s  60s     765293 472322    61.7
 7:  1960s  50s     756929 366183    48.4
 8:  1970s  40s     706611 274007    38.8
 9:  1980s  30s     784614 234508    29.9
10:  1990s  20s     672919 136223    20.2
11:  2000s  10s      71046  19020    26.8


Those born in 1940s or 1950s decades have a combined 819,939 ballots accepted. By comparison, those born 1980 or afterwards (ages 18 - 39) have a combined 46% of that (819,939total with 389,751 ballots accepted.  That "youth" or millennial vote in WA weighed in at last. If you have followed these matchbacks reports you know this was simply not the case in early voting.  The youth vote was not strong enough to stop i976, but they prevented a Republican rout in Seattle and Whatcom.  GenXrs, those born in the 60s and 70s are  contributing 640,190 votes Please see 'Age by Statusbelow.  To see my updated and ongoing piece on WWU precinct turnout, see hereWomen are currently out voting men in all but 2 small counties. The later balloting is now skewing heavily female. This is another sign that close races will fall to more liberal candidates.  For the state as a whole:

   BallotStatus  Female   Male
1:     Accepted 1030708 955802 # Ready for tabulation or tabulated
2:     Received    8258   7740 # In the chute
3:     Rejected   15011  16151 # Challenged or Rejected

For our neck of woods (Whatcom, Skagit, San Juan), accepted female votes are ahead of male votes significantly now:

   BallotStatus Female  Male
1:     Accepted  66253 59434
2:     Received     58    41
3:     Rejected    628   749

Tables made from rdata.table code with output follow the break. Widescreen is best for viewing especially on a phone.


# [All State: 11.08.2019] 
sMB110819[,.N,.(BallotStatus)]
   BallotStatus       N
1:     Accepted 1995091
2:     Rejected   31483
3:     Received   16037

VR[StatusCode == "Active",.N]
[1] 4479369
# All status active as of October 1 (4.47M)
# Percentage Accepted and Received as of 11.08.2019
(1995091+16037)/VR[StatusCode == "Active",.N] * 100
[1] 44.89757

# See also https://results.vote.wa.gov/results/20191105/Turnout.html

#[All State: Challenge Reason]
sMB110819[BallotStatus == "Rejected",.N]
[1] 31483

sMB110819[,.N,.(ChallengeReason)][order(-N)]
              ChallengeReason       N
 1:                           2011135
 2:  Signature Does Not Match   12305
 3:                  Too Late    7042
 4:                  Unsigned    5455
 5:                    Review    1793
 6:             Undeliverable    1407
 7:                      HOLD    1399
 8:          Other than Voter     753
 9:       Ballot Style Change     395
10:          Other Than Voter     189
11:      No Signature on File     157
12:               ID Required     128
13:              Marked Moved      83
14:          Canvassing Board      76
15:                  Deceased      66
16:                      Hold      58
17:         Voter Name Change      43
18: Witness Signature Missing      38
19:            Empty Envelope      29
20:         Power of Attorney      25
21:               Id Required      24
22:                   Invalid       6
23:   Advanced Special Ballot       2
24:      No Signature On File       2
25:         Power Of Attorney       1
              ChallengeReason       N

# [Whatcom County]
sMB110819[County == "Whatcom",.N,.(ChallengeReason)][order(-N)]
             ChallengeReason     N
 1:                          81763
 2: Signature Does Not Match   394
 3:                 Unsigned   140
 4:         Other than Voter    71
 5:      Ballot Style Change    46
 6:                     HOLD    27
 7:              ID Required     8
 8:                   Review     5
 9:           Empty Envelope     2
10:                 Deceased     1

sMB110819[County == "Whatcom",.N,.(BallotStatus)]
   BallotStatus     N
1:     Accepted 81663
2:     Rejected   694
3:     Received   100

# All State
# VR[,Age:=as.numeric(year(ymd_hms(Sys.time()))) - year(ymd(Birthdate))]

sMB110819[,.N,.(Decade=paste0(year(mdy(gsub(" 12:00:00 AM","",DOB)))%/%10,"0s"),BallotStatus)][,
dcast(.SD, BallotStatus ~ Decade, value.var="N",fun.aggregate=fsum)]


Age By Status

   BallotStatus 1900s 1910s 1920s  1930s  1940s  1950s  1960s  1970s  1980s  1990s 2000s
1:     Accepted     5   537 22336 122333 347617 472322 366183 274007 234508 136223 19020
2:     Received     0     1    76    525   2122   3719   3453   2556   2003   1323   259
3:     Rejected     1    11   283   1028   2476   4611   5102   5249   5733   5892  1097

sMB = sMB110819[,.N,.(Decade=paste0(year(mdy(gsub(" 12:00:00 AM","",DOB)))%/%10,"0s"),BallotStatus)][,
dcast(.SD, BallotStatus ~ Decade, value.var="N",fun.aggregate=fsum)]


cbind(setnames(VR[StatusCode == "Active",.N,.(Decade=Age%/%10)][order(-Decade)],
c("Age","Registered"))[],
setnames(as.data.table(t(sMB),keep.rownames=TRUE)[2:12,1:2],
c("Decade","Voted"))[])[,
.(Decade,Age=paste0(Age,"0s"),Registered,Voted)][,
.SD[,.(Turnout=round(as.numeric(Voted)/as.numeric(Registered),3) * 100)], .(Decade,Age,Registered,Voted)]

    Decade  Age Registered  Voted Turnout
 1:  1900s 110s         27      5    18.5
 2:  1910s 100s       1711    537    31.4
 3:  1920s  90s      44030  22336    50.7
 4:  1930s  80s     184015 122333    66.5
 5:  1940s  70s     492174 347617    70.6
 6:  1950s  60s     765293 472322    61.7
 7:  1960s  50s     756929 366183    48.4
 8:  1970s  40s     706611 274007    38.8
 9:  1980s  30s     784614 234508    29.9
10:  1990s  20s     672919 136223    20.2
11:  2000s  10s      71046  19020    26.8


sMB110819[Gender == "M" | Gender == "F",.N,.(Gender,BallotStatus)][,
setnames(dcast(.SD, BallotStatus ~ Gender, value.var="N",fun.aggregate=fsum),
c("BallotStatus","Female","Male"))]

   BallotStatus  Female   Male
1:     Accepted 1030708 955802
2:     Received    8258   7740
3:     Rejected   15011  16151

sMB110819[County %in% c("Whatcom","Skagit","San Juan"),
.N,.(Decade=paste0(year(mdy(gsub(" 12:00:00 AM","",DOB)))%/%10,"0s"),BallotStatus)][,
dcast(.SD, BallotStatus ~ Decade, value.var="N",fun.aggregate=fsum)]

   BallotStatus 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s
1:     Accepted    39  1533  8459 24700 30247 20191 15796 13854  9707  1562
2:     Received     0     0     3    14    28    16    10     6    17     6
3:     Rejected     1    14    62   149   228   193   176   214   299    57

sMB110819[County %in% c("Whatcom","Skagit","San Juan"),][
Gender == "M" | Gender == "F",.N,.(Gender,BallotStatus)][,
setnames(dcast(.SD, BallotStatus ~ Gender, value.var="N",fun.aggregate=fsum),
c("BallotStatus","Female","Male"))]

   BallotStatus Female  Male
1:     Accepted  66253 59434
2:     Received     58    41
3:     Rejected    628   749

sMB110819[(Gender == "M" | Gender == "F") & County %in% c("Whatcom","Skagit","San Juan"),
.N,.(County,Gender)][order(County,-Gender)]

     County Gender     N
1: San Juan      M  3729
2: San Juan      F  4181
3:   Skagit      M 17663
4:   Skagit      F 19440
5:  Whatcom      M 38832
6:  Whatcom      F 43318

VR[(Gender == "M" | Gender == "F") & StatusCode == "Active" & CountyCode %in% c("WM","SK","SJ"),
.N,.(CountyCode,Gender)][order(CountyCode,-Gender)]

   CountyCode Gender     N
1:         SJ      M  6481
2:         SJ      F  7164
3:         SK      M 36785
4:         SK      F 40808
5:         WM      M 69437
6:         WM      F 75676

# October 1st VRDB WA ('whole enchilada')
VR[StatusCode == "Active",.N,.(Gender)]
   Gender       N
1:      M 2145204
2:      F 2313683
3:           5806
4:      U   14549
5:      O     127

# Just our neck of woods: Whatcom, Skagit, San Juan
VR[StatusCode == "Active" & CountyCode %in% c("WM","SK","SJ"),.N,.(Gender)]

   Gender      N
1:      M 112703
2:      F 123648
3:           425
4:      U     52
5:      O     14

sMB110819[(Gender == "M" | Gender == "F"),
.N,.(County,Gender)][order(County,-Gender)][,
dcast(.SD, County ~ Gender,value.var="N",fun.aggregate=fsum)][,
.(County,Male=M,Female=F)][,
.SD[,.(Pct.Male=round(Male/(Male+Female),3) * 100)],
.(County,Male,Female)]

# y= male outvotes female

          County   Male Female Pct.Male
 1:        Adams   1420   1567     47.5
 2:       Asotin   3265   3448     48.6
 3:       Benton  22428  23255     49.1
 4:       Chelan  11009  11768     48.3
 5:      Clallam  13176  14766     47.2
 6:        Clark  51546  55552     48.1
 7:     Columbia    745    815     47.8
 8:      Cowlitz  14391  15415     48.3
 9:      Douglas   5071   5403     48.4
10:        Ferry   1290   1261     50.6 y
11:     Franklin   6241   6493     49.0
12:     Garfield    533    542     49.6
13:        Grant   8666   8902     49.3
14: Grays Harbor  10390  11290     47.9
15:       Island  14477  15986     47.5
16:    Jefferson   7007   7814     47.3
17:         King 313762 334140     48.4
18:       Kitsap  37444  39456     48.7
19:     Kittitas   6695   6961     49.0
20:    Klickitat   3331   3396     49.5
21:        Lewis  11345  11758     49.1
22:      Lincoln   2105   2138     49.6
23:        Mason   9669   9868     49.5
24:     Okanogan   5628   5939     48.7
25:      Pacific   3686   3930     48.4
26: Pend Oreille   2301   2311     49.9
27:       Pierce  98959 107440     47.9
28:     San Juan   3729   4181     47.1
29:       Skagit  17663  19440     47.6
30:     Skamania   1851   1837     50.2 y
31:    Snohomish  97970 104788     48.3
32:      Spokane  73871  82274     47.3
33:      Stevens   7475   7707     49.2
34:     Thurston  38793  43457     47.2
35:    Wahkiakum    769    808     48.8
36:  Walla Walla   7328   8106     47.5
37:      Whatcom  38832  43318     47.3
38:      Whitman   5192   5417     48.9
39:       Yakima  19640  21030     48.3
          County   Male Female Pct.Male

No comments: